Moving Charges and
Magnetism

4.5 MacgNETIC FIELD DUE TO A CURRENT ELEMENT,
BioT-SAvART LAw

All magnetic fields that we know are due to currents (or moving charges)
and due to intrinsic magnetic moments of particles. Here, we
shall study the relation between current and the magnetic field
it produces. It is given by the Biot-Savart’s law. Figure 4.9 shows
a finite conductor XY carrying current I. Consider an infinitesimal
element dl of the conductor. The magnetic field dB due to this
element is to be determined at a point P which is at a distance r
from it. Let 8 be the angle between dl and the displacement vector
r. According to Biot-Savart’s law, the magnitude of the magnetic
field dB is proportional to the current I, the element length |dll,
and inversely proportional to the square of the distance r. Its
direction* is perpendicular to the plane containing dl and r.
Thus, in vector notation,
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expression holds when the medium is vacuum.
The magnitude of this field is,
|dB] =

an 12 [4.11(b)]

where we have used the property of cross-product. Equation [4.11 (a)]

constitutes our basic equation for the magnetic field. The proportionality
constant in SI units has the exact value,

Z—; —107Tm/A [4.11(c)]

We call u, the permeability of free space (or vacuum).

The Biot-Savart law for the magnetic field has certain similarities, as
well as, differences with the Coulomb’s law for the electrostatic field. Some
of these are:

() Both are long range, since both depend inversely on the square of
distance from the source to the point of interest. The principle of
superposition applies to both fields. [In this connection, note that
the magnetic field is linear in the source I dl just as the electrostatic
field is linear in its source: the electric charge.]

(ii) The electrostatic field is produced by a scalar source, namely, the
electric charge. The magnetic field is produced by a vector source
IdlL

* The sense of dlxr is also given by the Right Hand Screw rule : Look at the
plane containing vectors dl and r. Imagine moving from the first vector towards
second vector. If the movement is anticlockwise, the resultant is towards you.
If it is clockwise, the resultant is away from you.
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(iii) The electrostatic field is along the displacement vector joining the
source and the field point. The magnetic field is perpendicular to the
plane containing the displacement vector r and the current element
IdlL

(iv) There is an angle dependence in the Biot-Savart law which is not
present in the electrostatic case. In Fig. 4.9, the magnetic field at any
point in the direction of dI (the dashed line) is zero. Along this line,
0=0, sin =0 and from Eq. [4.11(a)], IdBI =0.

There is an interesting relation between ¢, the permittivity of free
space; u,, the permeability of free space; and c, the speed of light in
vacuum:

1 _ 1 1
ot = () g = T (107) = BX10°F ¢
We will discuss this connection further in Chapter 8 on the
electromagnetic waves. Since the speed of light in vacuum is constant,
the product u,¢, is fixed in magnitude. Choosing the value of either g, or
Uy, fixes the value of the other. In SI units, u, is fixed to be equal to
4n x 107 in magnitude.

Example 4.5 An element Al=Axi is placed at the origin and carries

a large current I = 10 A (Fig. 4.10). What is the magnetic field on the
y-axis at a distance of 0.5 m. Ax =1 cm.

y
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FIGURE 4.10
Solution
I dl sin 6
|dB = Z_:: ——5— [using Eq. (4.11)]

dl=Ax=10"m,I=10A, r=05m =y, ,u0/4n=10‘7TTm

60=90° ;sin 6=1

107 x10x107
9B = 5107 - 4*10°T

The direction of the field is in the +z-direction. This is so since,
dixr=Axixyj =yAx(ixj) =yAxk
We remind you of the following cyclic property of cross-products,
ixj=k; jxk=1i;kxi=j
Note that the field is small in magnitude.
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In the next section, we shall use the Biot-Savart law to calculate the
magnetic field due to a circular loop.

4.6 MAGNETIC FIELD ON THE AXIS OF A CIRCULAR
Current Loor

In this section, we shall evaluate the magnetic field due to a circular coil
along its axis. The evaluation entails summing up the effect of infinitesimal
current elements (I dI) mentioned in the previous section.
We assume that the current I is steady and that the Y
evaluation is carried out in free space (i.e., vacuum).
Figure 4.11 depicts a circular loop carrying a steady
current I. The loop is placed in the y-z plane with its
centre at the origin O and has a radius R. The x-axis is
the axis of the loop. We wish to calculate the magnetic
field at the point P on this axis. Let xbe the distance of

P from the centre O of the loop.

Consider a conducting element dl of the loop. This is
shown in Fig. 4.11. The magnitude dB of the magnetic
field due to dlis given by the Biot-Savart law [Eq. 4.11(a)],

di

ag <t I |dl x r|
ar r°
Now r* = x* + R® . Further, any element of the loop

will be perpendicular to the displacement vector from
the element to the axial point. For example, the element

4.12) 2

dl in Fig. 4.11 is in the y-z plane, whereas, the element dl ) and its
displacement vector r from dl to the axial point P is in components along and
the x-y plane. Hence |dl x r|=rdl Thus, perpendicular to the axis.
Y
dB = 4n (x2 + RZ) (4.13)

The direction of dB is shown in Fig. 4.11. It is perpendicular to the
plane formed by dl and r. It has an x-component dB_and a component
perpendicular to x-axis, dB,. When the components perpendicular to
the x-axis are summed over, they cancel out and we obtain a null result.
For example, the dB, component due to dlis cancelled by the contribution
due to the diametrically opposite dl element, shown in
Fig. 4.11. Thus, only the x-component survives. The net contribution
along x-direction can be obtained by integrating dB, = dB cos §over the
loop. For Fig. 4.11,

R

cosf= W (4.14)

From Egs. (4.13) and (4.14),

dB, = HoIdl R
An (x*+R?

)3/2
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FIGURE 4.11 Magnetic field on the
axis of a current carrying circular
loop of radius R. Shown are the
magnetic field dB (due to a line
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The summation of elements dlover the loop yields 2xnR, the
circumference of the loop. Thus, the magnetic field at P due to entire
circular loop is

: Hol R’ :

B=BdA= 2(x* +R?)"” l e
As a special case of the above result, we may obtain the field at the centre
of the loop. Here x= 0, and we obtain,

Mol
“5R 1 (4.16)

The magnetic field lines due to a circular wire form closed loops and
are shown in Fig. 4.12. The direction of the magnetic field is given by
(another) right-hand thumb rule stated below:

Curl the palm of your right hand around the circular wire with the
fingers pointing in the direction of the current. The right-hand thumb
gives the direction of the magnetic field.

B,

%“é

FIGURE 4.12 The magnetic field lines for a current loop. The direction of

the field is given by the right-hand thumb rule described in the text. The

upper side of the loop may be thought of as the north pole and the lower
side as the south pole of a magnet.

Example 4.6 A straight wire carrying a current of 12 A is bent into a
semi-circular arc of radius 2.0 cm as shown in Fig. 4.13(a). Consider
the magnetic field B at the centre of the arc. (a) What is the magnetic
field due to the straight segments? (b) In what way the contribution
to B from the semicircle differs from that of a circular loop and in
what way does it resemble? (c) Would your answer be different if the
wire were bent into a semi-circular arc of the same radius but in the
opposite way as shown in Fig. 4.13(b)?

S\

(@) (b)

FIGURE 4.13
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